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PROBLEM 
Non-motorized traffic includes cyclists, pedestrians and other non-motorized road and 

trail users (e.g., skateboard, inline skates, wheelchair, etc.). To better understand all uses of a 

transportation network within a given area, it is necessary to perform both motorized and non-

motorized traffic monitoring. However, unlike for motorized traffic, non-motorized traffic has 

not been comprehensively monitored in communities throughout the U.S. and is generally 

performed in an ad hoc fashion (FHWA, 2013). 

According to the Traffic Monitoring Guide (FHWA, 2013) and NCHRP REPORT 797 

Guidebook on Pedestrian and Bicycle Volume Data Collection (Ryus et al., 2014), there are 

some major differences between motorized and non-motorized traffic patterns: (1) non-

motorized traffic varies more than motorized traffic by time of day and season, and is more 

sensitive to changes in weather (Ryus et al., 2014), (2) non-motorized trips are comparatively 

shorter and more correlated with adjacent land uses (Ryus et al., 2014), (3) non-motorized traffic 

is more difficult to detect and monitor with existing technologies (FHWA, 2013). 

Federal, state and local governments have stressed the need to conduct bicycle and 

pedestrian data collection campaigns and have promoted non-motorized travel by targeted 

funding and pilot demonstration projects. The FHWA recommended in a policy statement in 

2010 that “the best way to improve transportation networks for any mode is to collect and 

analyze trip data to optimize investments.” More information is needed on best practices for 

implementing non-motorized traffic monitoring campaigns. 

APPROACH 
To address the problem statement defined above, we developed a systematic non-

motorized traffic (i.e., bicycle and pedestrian) monitoring campaign in a small, rural college 

town (Blacksburg, VA). We use data from the bicycle and pedestrian count campaign to estimate 

spatial and temporal patterns of non-motorized traffic. A key goal is to identify best practices for 

counting bicycles and pedestrians on an entire transportation network, rather than only focus on 

off-street trail systems or specific transportation corridors (Hankey et al., 2014; Nordback et al., 

2013; Nosal & Miranda-Moreno, 2014). In this report we summarize four research tasks (Figure 

1) to assess seasonal, daily, and hourly patterns of non-motorized traffic. We then develop 

scaling factors (analogous to those used in motor vehicle count programs) derived from 

continuous reference sites to estimate long-term averages (i.e., Annual Average Daily Traffic 

[AADT]) for short-duration count sites. Finally, we develop a set of facility-demand models to 

estimate non-motorized traffic volumes at locations without counts.  
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Figure 1. Workflow and research objectives. 

METHODOLOGY 
To systematically monitor the bicycle and pedestrian traffic in Blacksburg, VA we 

developed a traffic count campaign that covers different road and trail types (i.e., major road, 

local road, and off-street trails) using commercially available counting technologies (i.e., 

pneumatic tubes, passive infrared, and RadioBeam). In this section we summarize the methods 

used to accomplish the four tasks listed in Figure 1. We then describe and discuss our findings in 

the subsequent sections. 

Task 1: Automated counter description and validation  

We used three existing automated counter technologies as well as manual field-based 

counts (validation counts) to monitor bicycle and pedestrian traffic patterns: MetroCount MC 

5600 Vehicle Classifier System (pneumatic tube counters), Eco-counter “Pyro” (passive infrared 

counters), and Chambers RadioBeam Bicycle-People Counter (RadioBeam counters). The major 

considerations for choosing these counters were previous reported performance, location type, 

portability, and cost. MetroCount counts bicycles on roads with mixed traffic and includes easy 

installation and low cost (~$1,000 per unit). Eco-counter counts pedestrians only on sidewalks 

with a cost of ~$3,000 per unit. RadioBeam separately counts bicycles and pedestrians on off-

street trails with limited monitoring distance (~10 feet; ~$4,500 per unit). 

Manual validation counts 

Manual field-based counts are the most common and labor intensive method to collect 

non-motorized traffic counts. We collected manual field counts (for the purpose of validating 

automated counters) for ~230 hours at 8 locations with the assistance of a graduate course (UAP 

5864 Topics in Transport Policy) in spring, 2015. The 8 locations include: (1) locations with a 

variety of bicycle and pedestrian traffic volumes selected with input from the Town of 

Blacksburg and (2) a subset of count locations with high bicycle traffic volumes (i.e., Kent St, 

Smithfield Road). The purpose of manual field-based counting is to adjust counts retrieved from 

automated counters for further analysis (i.e., developing correction equations). We designed a 

standard screenline field-based manual count form, and attached a reference map to inform 

volunteers of traffic direction and screenline location. We documented traffic counts on a 2-hour 
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basis using 15-minute bins for both bicycles and pedestrians (if applicable) for both directions of 

travel. Additional information included on the forms was other travel modes (i.e., skateboards or 

rollerblades), date, start and end time, and general weather conditions. 

Automated counters 

MetroCount pneumatic tubes: We used the MetroCount MC 5600 Vehicle Classifier 

System (pneumatic tube counters) to monitor bicycles on roads (Figure 2). The working 

mechanism is to detect air pulses triggered by passing bicycles/vehicles through the two parallel 

pneumatic tubes fastened to the road with cleats, washers, flaps, or tape. The air pulses transmit 

to the A/B poles of the receiver unit on the roadside, and the time gap of A/B is analyzed by the 

counter to recognize the passing objects (i.e., bicycles or vehicles) and log speeds and traffic 

numbers with specific time bins (i.e., 15 minutes, 30 minutes, and 60 minutes).  

We installed the counter at the near side of the bicycle lane (if there is one) and tied it to a 

tree or pole with a chain (for protection). When fastening the two pneumatic tubes (equal length), 

one needs to face the traffic (for safety) and keep the parallel tubes perpendicular with the road. 

Major roads were installed with two MetroCount counters on each half of the road (considering 

the width of the major roads); local roads were installed with only one counter (Figure 3).  

 
Figure 2. MetroCount counter and related equipment. 

 
Figure 3. MetroCount counter installation. 
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Eco-Counter “Pyro” passive infrared: We used the Eco-counter “Pyro” (passive 

infrared) counters to detect pedestrians by comparing the temperature of the background with the 

radiation (heat) from crossing pedestrians. These counters are meant to be attached onto an 

existing pole; however, due to the lack of suitable permanent poles on the sidewalks, home-made 

poles fixed in concrete stanchions were used (Figure 4). The detection range is around 15’ (with 

a cone shaped beam) which requires counters to point at a fixed object (e.g., wall), rather than a 

moving object (bush) or reflective surface (metal). The counters were positioned so that the 

lenses of the sensor face the path (sidewalk) rather than the road. The appropriate height of the 

counter is approximately 700 to 800 mm. The counter can detect two people simultaneously 

when they pass in a staggered fashion and has a data logging capacity for up to 10 years.  

 
Figure 4. Eco-counter "Pyro" counter and portable stanchion. 

RadioBeam Bicycle-People Counter (Chambers Electronics RBBP8): We used the 

RadioBeam Bicycle-People Counter (RBBP8) to monitor bicycle and pedestrian volumes on off-

street trails (Figure 5). The RBBP8 has two protective housings that are installed on both sides of 

the trail at 65 cm above ground level. When a bicycle or pedestrian passes, a count is registered; 

specifically, the counter uses two beams (at two different frequencies) to detect the passing 

pedestrian and passing metal (i.e., bicycles). The two units can be positioned up to 3 meters 

apart. It is important to note that underground cables or other electromagnetic interference may 

influence the data or even ruin the logger, so periodic checking and testing are needed when 

conducting bicycle and pedestrian counts. Home-made poles (same as the Eco-counter) were 

used to allow portability of the two units for most of the trails where permanent poles are not 

available. 
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Figure 5. RadioBeam counter for a short-duration count site. 

Counter validation and developing correction equations 

We developed correction equations to apply to output from the automated counters due to 

potential systematic undercounts due to occlusion. For example, when a bicycle and a vehicle 

pass the MetroCount pneumatic tubes at the same time, there is a chance to miss the bicycle 

count; when two or three pedestrians pass the Eco-counter at the same time, the counter may 

miss one or two counts due to occlusion. Similar occlusion may occur for the RadioBeam 

counter when a cluster of pedestrians pass at the same time; however, bicycles sometimes are 

over-counted with the RadioBeam due to repeated detection of metal. We developed and applied 

correction equations for MetroCount, Eco-counter and RadioBeam counters to adjust all raw data 

from the counters for further analysis.  

MetroCount correction equations 

Due to the fact that the pneumatic tubes are deployed in mixed traffic they represent the 

most complicated device to develop correction equations. MetroCount detects and classifies 

every vehicle using axle base and axle counts (i.e. raw axle counts, axle counts divided by 2, or 

gaps above a certain length). We compared three bicycle-based classification schemes provided 

by MetroCount (i.e., ARX Cycle, BOCO and Bicycle 15; Table 1). The ARX Cycle scheme uses 

the Australian vehicle classification with an added bicycle scheme. The BOCO (Boulder County, 

CO) scheme revises the rules for truck classes based on ARX Cycle scheme and creates an extra 

bicycle class. The Bicycle 15 scheme adds an additional class for bicycles with the FHWA 

vehicle classification.  

Table 1. Criteria for scheme classification 

Classification Scheme Axle Base Axle Count 

ARX Cycle ≤ 1.22 meters 2 

BOCO 0.88 – 1.22 meters Varies 

Bicycle 15 ≤ 1.16 meter 2 
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We used manual counts from selected locations to develop correction equations. To test 

the MetroCount data with different schemes, we compared manual bicycle counts with the 

automated bicycle count from each classification scheme. According to the Traffic Monitoring 

Guide (FHWA, 2013) and NCHRP REPORT 797 Guidebook on Pedestrian and Bicycle Volume 

Data Collection (Ryus et al., 2014) and other literature (Brosnan et al., 2015; Nordback et al., 

2015), the common method to assess the accuracy of automated counters is as follows: 

                                            𝑒𝑖 = 
𝐴𝑖−𝑀𝑖

𝑀𝑖
                                                              Equation 1 

Where ei  is the percent error for the count interval i, Ai is the automated pneumatic counts for 

count interval i, and Mi is the manual counts for count interval i. Due to the possibility that 

individual observations may over- or under-count and offset each other, absolute error is also 

introduced to assess the accuracy of counters: 

                                             Ei  = │
𝐴𝑖−𝑀𝑖

𝑀𝑖
│                                                              Equation 2 

Where Ei is the absolute error for the count interval i, Ai is the automated pneumatic counts for 

count interval i, and Mi is the manual counts for count interval i. All the validation counts for 

bicycles were conducted at 8 locations in Blacksburg (Figure 6) and 181 valid hours of manual 

counts were used in this analysis.  

 
Figure 6. MetroCount bicycle count scheme validation locations. 
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To compare each scheme, we calculated (1) the percent error and absolute value of error 

for 15-minute, 30-minute and 60-minute intervals and (2) the correction equations for 15-minute, 

30-minute and 60-minute intervals. Table 2 and 3 give summary statistics of error and goodness-

of-fit for each classification scheme and time interval. Figures 7-9 show scatter plots of 

automated vs. manual counts for each case. 

For average percent error, the 60-minute time interval has the least error using all three 

schemes compared with the other time intervals. Bicycle 15 scheme presents the least error with 

-4.4% for 60-minute interval among the three schemes. For the average absolute error, 60-minute 

time interval also has the least error using all three schemes. BOCO scheme shows the best 

accuracy with average absolute error 38.1% for 60-minute interval among the three schemes 

(Table 2). In this case, a 60-minute time interval is recommended for adjusting counts using 

correction equations.  

For the R2 of polynomial and linear corrections comparisons, 60-minute time interval 

shows the highest value of R2 for all three schemes (Table 3). ARX Cycle, BOCO and Bicycle 

15 schemes share similar R2 of polynomial correction equations; however, the BOCO scheme 

has lower linear slope (1.26) than ARX Cycle (1.29) and Bicycle 15 (1.31). In this case, the 

BOCO scheme is recommended, which is consistent with other similar studies (Brosnan et al., 

2015; Hyde-wright et al., 2014; Nordback et al., 2015). Therefore, according to the percent error, 

absolute error and R2 comparisons, we used BOCO scheme to validate bicycle traffic for hourly 

counts with polynomial correction equation.  

 

Table 2. Percent error and absolute error for each scheme 

Time 

Interval 

ARX Cycle BOCO Bicycle 15 

Average 

Percent 

Error 

Average 

Absolute 

Error 

Average 

Percent 

Error 

Average 

Absolute 

Error 

Average 

Percent 

Error 

Average 

Absolute 

Error 

15-minute -20.3% 43.5% -25.7% 41.0% -19.1% 47.7% 

30-minute -13.3% 42.2% -19.8% 39.0% -12.9% 42.9% 

60-minute -5.2% 40.2% -17.5% 38.1% -4.4% 40.4% 

 

Table 3. Polynomial and linear correction equations for each scheme 

Time 

Interval 

ARX Cycle BOCO Bicycle 15 

Polynomial 

Correction 

R2 

Linear 

Correction 

R2 

Linear 

Slope 

Polynomial 

Correction 

R2 

Linear 

Correction 

R2 

Linear 

Slope 

Polynomial 

Correction 

R2 

Linear 

Correction 

R2 

Linear 

Slope 

15-minute 0.69 0.68 1.07 0.71 0.71 1.08 0.51 0.50 0.92 

30-minute 0.81 0.81 1.21 0.81 0.81 1.19 0.80 0.80 1.22 

60-minute 0.895 0.885 1.29 0.898 0.886 1.26 0.897 0.882 1.31 
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Figure 7. MetroCount correction equation scheme comparisons 15 minute interval. 
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Figure 8. MetroCount correction equation scheme comparisons 30 minute interval. 
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Figure 9. MetroCount correction equation scheme comparisons 60 minute interval. 
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Eco-counter correction equations 

Similar to the MetroCount data we used field-based manual counts to develop correction 

equations for the Eco-counter. All of the validation counts for pedestrians were conducted at 5 

locations with sidewalks (i.e., College Avenue [both sidewalks], Turner Street [both sidewalks], 

Country Club Drive, University City Blvd [east sidewalk] and Patrick Henry Drive [both 

sidewalks]). This process resulted in 274 valid hours of manual counts for use in developing 

correction equations.  

When hourly pedestrian counts reached ~400, the correction curve demonstrated a 

polynomial pattern (Figure 18). This pattern supports Schneider et al. (2013) indicating that 

passive infrared undercounts more when pedestrian volumes increase. As such, this research 

applies the polynomial correction equations to adjust all the hourly counts retrieved from the 

Eco-counter. The calculated average absolute error is 23.9%. Most likely because flow is 

constricted (i.e., more occlusion) when there are large volumes.  

 
Figure 10. Eco-counter correction equations. 

 

RadioBeam correction equations 

We collected 29 hours of field-based manual counts at the Huckleberry Trail to validate 

both bicycle and pedestrian counts (Figure 11). Since the count data reveals a linear pattern, we 

used linear equations to adjust the count data. The calculated average absolute errors for bicycles 

and pedestrians are 19.2% and 22.4%. An important aspect to note is that the RadioBeam was 

the only counter to overcount (i.e., for cyclists). This is due to the fact that the sensitivity on 

these units was increased to detect cyclists at sufficient distance across the trail resulting in 

double counting of some cyclists. As demonstrated in Figure 11 this overcount was systematic 
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Figure 11. RadioBeam correction equations for bicycles (top-panel) and pedestrians (bottom-

panel). 

Table 4 summarizes comparisons of adjusted and raw counts of all counters to show the 

difference between corrected and raw counts. For example, MetroCount undercounts bicycles. 

Eco-counter undercounts pedestrians, especially when the raw count approaches large volumes 

which indicates a polynomial correction when the pedestrian volume is very high. RadioBeam 

overcounts bicycles to some extent; however, it undercounts pedestrians. These findings are 

mostly consistent with previous studies. 
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Table 4. Comparisons of adjusted and raw counts of all counters 

Counter MetroCount Eco-counter RadioBeam 

Bicycle/Pedestrian Bicycle Pedestrian Bicycle Pedestrian 

Count type Raw Adjusted Raw Adjusted Raw Adjusted Raw Adjusted 

Count value 

5 6 10 12 5 6 5 4 

10 12 50 51 20 18 20 25 

20 27 400 619 50 41 150 205 

 

Task 2: Site selection and data collection 

Based on the number of available counters we selected 4 reference sites and 97 short-

duration count sites from existing major roads, local roads, and off-street trails using a 

combination of systematic and random selection. In total, the major roads included 14 count sites 

with a bike lane and 15 sites without a bike lane. These sites cover the majority of major road 

segments in Blacksburg, VA. The local roads consist of 34 build-out (future planned bicycle 

facilities) sites and 14 random low volume sites. The off-street trails include 10 transport trails 

(long distances or transport function) and 10 neighborhood trails. The process for selecting count 

sites is described below. 

Site selection process and description 

Continuous reference sites: The continuous reference sites were selected based on (1) 

professional judgment (possible high/low bicycle/pedestrian volumes), (2) different road, trail, 

and facility type (roads with/without bike lane), and (3) surrounding land use (i.e., proximity to 

the university, downtown and residential areas). More specifically, the sites included one off-

street trail (Huckleberry Trail), one road near campus and downtown (College Avenue), one 

neighborhood local road without bike lanes (Giles Road), and one neighborhood local road with 

a bike lane (Draper Road) (Table 5; Figure 12). Traffic counts were collected for the full year-

2015 at Huckleberry Trail and ~9 months (year-2015) at the other three continuous sites. The full 

year of counts allows for assessing traffic patterns in each consecutive month at the reference 

sites. The traffic counts at the continuous reference sites can be used to generate scaling factors 

to estimate performance measures (i.e., AADT) at the short-duration count sites.  

Table 5. Continuous reference site locations 

Location Location Type Counter Install Date 

Draper Road Neighborhood road; bike lane 1 MetroCount; 1 Eco-counter April 18, 2015 

College Avenue Near campus and retail 1 MetroCount; 2 Eco-counter March 19, 2015 

Giles Road Neighborhood road; no bike lane 1 MetroCount; 1 Eco-counter April 18, 2015 

Huckleberry Trail Off-street trail 1 RadioBeam December 18, 2014 
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Figure 12. Continuous reference sites for bicycle and pedestrian monitoring. 

Short-duration count sites: The core goal of choosing the short-duration count sites is to 

span the variable space for both (1) bicycle and pedestrian traffic volumes and (2) potential 

predictor variables to allow for spatial modeling (see Task 4). This section provides a summary 

of how we chose the count sites. Variables that we considered during this process were (Figure 1 

shows each variable mapped in Blacksburg): 

1) Street functional class: Transportation networks are designed in a hierarchal fashion. 

Both motorized and non-motorized traffic are associated with functional class. 

2) Bicycle and pedestrian infrastructure: Trails, bike lanes, bike markings, sidewalks, etc. 

are correlated with bike and pedestrian traffic. 

3) Centrality: Spatial patterns of origins, destinations, and the road network may impact 

traffic patterns. We use a measure called Centrality to estimate bicycle trip potential in 

the absence of actual counts. 
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Figure 13. Major roads (left), bicycle network (middle), and centrality (right) for Blacksburg. 

We chose count sites primarily based on the goal of ensuring each street functional class 

was sampled sufficiently. We oversampled both existing and planned cycling infrastructure and 

ensured there was variability for the segment attribute of centrality within each road type. 

1) Major roads (n = 29 locations): All roads classified as minor arterials and collectors. 

2) Off-street trails (n = 20 locations): All multi-purpose trails that are separate from streets. 

3) Local roads (n = 51 locations): All other roads in Blacksburg. This category represents 

nearly ¾ of segments in Blacksburg. 

Sites were chosen using a combination of systematic (professional judgement) and 

random selection. Sites were chosen sequentially by category in this order: (1) major roads, (2) 

off-street trails, (3) local roads – first for future planned bicycle facilities and then for places with 

low centrality to adjust for oversampling places likely to have high volumes. Table 1 summarizes 

counts by method of selection. We trimmed the dataset for selection by removing all segments 

that were <250 feet in length from the selection process.  

We first selected count sites on major roads. Since there are relatively few major roads in 

Blacksburg we were able to monitor all major road segments in the Town. Next, we selected 

count sites on off-street trails. We separated trails into two categories: Transport trails (trails that 

were long distance and connected to the network) and neighborhood trails (trails that were part 

of subdivision development and disconnected from the network). We then randomly selected 10 

locations within each trail type. Finally, we selected ~50 locations on local roads. We first 

systematically selected locations where there is a planned infrastructure buildout according to the 

bicycle master plan. Since this resulted in oversampling locations with high Centrality (i.e., high 

trip potential) we also randomly selected 15 locations on local roads with low Centrality (it is 

important to capture low and high volumes for spatial modeling. This process resulted in 100 

short-duration count locations. Upon inspection of the count locations 3 were removed from the 

dataset due to difficulty in sampling at those locations (e.g., dirt roads). Table 6 gives a summary 

of the count locations and Table 7 compares our count locations to the entire network. Figure 14 

maps the short-duration count locations; Figure 15 shows examples of counters deployed at these 

locations. 
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Table 6. Summary of counts by location type 
Location Type Count locations % of count locations Potential segments % sampled Sample type 

Major Roads           

Bike lanes 10 10% 45 22% Systematic 

No facility 19 19% 121 16% Systematic 

Off-street trails           

Transport 10 10% 15 67% Systematic 

Neighborhood 10 10% 26 38% Random 

Local roads           

Bike buildout 36 36% 976 4% Systematic 

Low centrality 15 15% 976 2% Random 

Table 7. Summary of share and centrality of count locations vs. Town of Blacksburg 

  
Share of locations Mean (IQR) O-D centrality 

Count Locations Town of Blacksburg Count Locations Town of Blacksburg 

Total Locations 100 1,848 - - 

Road Type         

Major Road 29% 14% 48,000 (14,900-64,000) 43,000 (6,700-55,000) 

Local Road 51% 72% 87,500 (1,100-121,000) 33,500 (1,300-26,400) 

Trail 20% 14% 252,400 (8,500-369,000) 68,800 (1,000-66,400) 

Bike facility type         

On-street 15% 6% 103,000 (27,562-136,000) 76,300 (12,600-121,000) 

Trail 20% 14% 252,400 (8,500-369,000) 68,800 (1,000-66,400) 

None 65% 81% 110,000 (2,400-98,000) 32,200 (1,400-26,700) 

Streets with sidewalks         

<100m away 80% 76% 86,800 (18,100-125,800) 49,500 (2,800-52,400) 

>100m away 20% 24% 46,500 (1,000-39,000) 15,900 (700-11,000) 

 
Figure 14. All count locations with centrality (left) and by road type (right). 
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Figure 15. Example short-duration count sites: Major road (top-panel); local road (middle-

panel); off-street trail (bottom-panel). 
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Data collection process 

To accomplish the count campaign we deployed 12 MetroCounters, 10 Eco-counters, and 

3 RadioBeam counters. Three MetroCounters, 4 Eco-counters, and 1 RadioBeam counter were 

installed at the 4 continuous reference sites; the remaining counters were rotated on a weekly 

basis at the short-duration count sites. We installed the counters in a randomized order during 

March-September of 2015 based on weather condition (e.g., snow plowing) and counter 

availability. Generally, each site was monitored for at least one week and we needed one extra 

day before and after for relocation. The sequence normally followed the randomized order as 

designated before counting began, however, some major roads needed the assistance of Town of 

Blacksburg to direct the traffic for deployment and so the order was adjusted slightly to 

accommodate these installations. We kept an event log for each site to validate traffic counts.  

The next step was to clean the dataset and conduct quality assurance and quality control 

(QA/QC). This process was necessary due to some incidents that yielded gaps in count data (e.g., 

counter malfunction, data loss, battery loss, and counter vandalism). To inform the QA/QC 

process, we kept an event log of key information (e.g., battery loss, activity and events) that may 

influence data quality. The ultimate goal was to monitor the traffic patterns in normal cases 

(excluding events [i.e., activity] that may skew the final analysis; Table 8). 

Two major methods were used to flag the suspicious data that should be cleaned: (1) 

direct cleaning based on the event log that identified suspect data and (2) a statistical check based 

on the variability of the overall dataset. First, we flagged and censored all data (days) that have 

been noted in the data log. For example, there were weekly Friday afternoon concerts held at 

College Avenue during the summer months, which attracted a large number of people (compared 

with normal Fridays). Another example is battery loss or change for the RadioBeam counter at 

the Huckleberry Trail. Once all the data flagged from the event log were censored, we used 

statistical methods to flag and exclude other abnormal counts via the following process: (1) 

calculate the mean and standard deviation of the bicycle/pedestrian hourly counts within the 

monitoring period by day of week and month (i.e., calculate each parameter separately for 

weekend and weekday for each month), (2) flag bicycle outliers by using (mean bicycle ± 5 × 

standard deviation) and flag pedestrian outliers by using (mean pedestrian ± 10 × standard 

deviation), and (3) re-check the validity of flagged data and censor outlier data.  

For the continuous reference sites, we summarized the valid monitoring days to show 

temporal coverage of the dataset (Table 8) and reasons for censoring data (Table 9). Since some 

reference sites were not deployed for a full calendar year, the summary of valid percent is shown 

using both the calendar year (2015) and time the counter deployed as a basis. Due to an Eco-

counter being stolen in September at Giles Road, only 102 valid days were monitored at that 

location for pedestrians. Giles Road was vulnerable to counter vandalism, so the valid pedestrian 

percent during counter deployed period was only 77% (102/133). Other sites had much higher 

percentage of valid counts for both bicycles and pedestrians: College Avenue experienced ~20 

days of data loss for both bicycle and pedestrian monitoring while the Huckleberry Trail 

encountered 13 days of battery loss. Overall, the continuous reference sites demonstrated good 

temporal coverage during counter deployed (bicycles: 96%; pedestrians: 87%) and for the 

calendar year-2015 (bicycles: 75%; pedestrians: 87%). For short-duration sites, 98% and 94% of 

sites had at least 7 days of monitoring for bicycles and pedestrians, respectively; no sites 

experienced 5 days or less of counts (Table 10).  
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Table 8. Valid monitoring days for the continuous reference sites 

 
Continuous reference sites 

Bicycle Pedestrian 

Sites Draper College Giles Huckleberry Draper College Giles Huckleberry 

Valid days of calendar year (2015) 257/365 247/365 246/365 350/365 263/365 229/365 102/365 336/365 

Valid percent of calendar year (2015) 70% 68% 67% 96% 72% 63% 28% 92% 

Valid days during counter deployed 257/257 247/275 246/257 350/365 263/275 229/275 102/133 336/365 

Valid percent during counter deployed 100% 90% 96% 96% 96% 83% 77% 92% 

Flagged data N/A 

No data 

retrieved; 

suspicious 

vehicle data 

No data 

retrieved; 

abrupt 

bicycle 

change 

No data 

retrieved; no 

battery 

Abrupt 

bicycle 

change 

No data 

retrieved; 

abrupt 

bicycle 

change 

counter 

moved or 

vandalized 

No data 

retrieved; no 

battery 

 

Table 9. Total flagged days for continuous reference sites 

Reason 
Continuous reference sites 

Bicycle Pedestrian 

Sites Draper College Giles Huckleberry Draper College Giles Huckleberry 

Counter malfunction/full data logger 0 22 8 2 0 18 0 1 

No battery 0 0 0 13 0 0 0 13 

Activity 0 0 0 0 0 13 0 0 

Road block 0 2 0 0 0 0 0 0 

Counter move/vandalism 0 0 0 0 0 0 27 0 

Statistical outlier 0 4 3 0 12 15 4 15 

Total flagged days 0 28 11 15 12 46 31 29 

 

Table 10. Valid monitoring days for short-duration sites 

Valid monitoring days 
Short-duration sites 

Bicycle Pedestrian 

5 days or less 0.0% 0.0% 

less than 7 days 2.1% 6.0% 

7 days 75% 70% 

7 days to 10 days 13% 15% 

More than 10 days 11% 9.0% 

 

 

Task 3: Estimating AADT for all count sites 

AADT estimation procedure 

We used a combination of information from the reference sites and short-duration sites to 

estimate AADT at all sites (Figure 16). Specifically, we (1) use the count data from the 

continuous reference sites to impute missing days using negative binomial regression models, (2) 

combine observed and estimated data from the reference sites to estimate AADT for each site, 

(3) develop day-of-year scaling factors from the continuous reference sites, and (4) apply the 

day-of-year factors to the short-duration counts to estimate AADT at all sites.  
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Figure 16. Flow chart of estimating AADT. 

Negative binomial regression models  

Previous research indicates that negative binomial regression models outperform ordinary 

least squares regression for imputing missing count days (Wang et al., 2014; Lindsey et al., 

2013; Cao et al., 2006; Kim & Susilo, 2013). Therefore, we used negative binomial regression 

models to impute missing days and estimate AADT for bicycles and pedestrians at all 4 

continuous reference sites in Blacksburg, VA. We compared the model estimates with observed 

(automated) counts and estimated AADT for reference site. Negative binomial regression takes 

into account the issue of overdispersion in the data (variance exceeds the mean), and it is 

appropriate to use when the data is a non-negative integer (e.g., counts). If overdispersion is not 

an issue, then a Poisson regression may be appropriate. The probability of y is expressed as: 

                        𝑃(𝑦 = 𝑚|𝜆, 𝑥1, 𝑥2 ⋯ ) =  
𝑒−𝜆𝜆𝑚

𝑚!
                                        Equation 3 

We used a type 2 negative binomial regression (Cameron et al., 2016), which assumes: 

mean is λ and variance is λ + α λ2. Maximum likelihood estimation (MLE) is used in the STATA 

package to estimate the parameters as follows: 

                           𝑙𝑛 𝜆 =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 +  ⋯                                    Equation 4 

With the estimated parameters, y can be estimated as: 

                    E (y│𝑥1, 𝑥2, ⋯ ) =  �̂� = exp (�̂�0 + �̂�1𝑥1 +  �̂�2𝑥2 +  ⋯ )      Equation 5 

However, the MLE does not have traditional R2 to evaluate goodness-of-fit due to the 

nonlinear form of the negative binomial regression. Instead, McFadden’s Pseudo-R2 (from 0 to 

1) is introduced to be consistent with previous literature: 

                              𝑅𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛
2 = 1 − 

𝑙𝑛(𝐿𝐹𝑢𝑙𝑙)

𝑙𝑛 (𝐿𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)
                                        Equation 6 

Where 𝐿𝐹𝑢𝑙𝑙 denotes the estimated likelihood value from the model with predictors, and 

𝐿𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 denotes the corresponding value from the model without predictors. McFadden’s 

Pseudo-R2 represents a proportional reduction in “error variance” (Allison, 2014). 

We developed 8 site-specific negative binomial regression models to estimate both the 

bicycle and pedestrian traffic on each day (year-2015) for each continuous reference site. The 
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models incorporate weather and temporal variables (e.g., max temperature, precipitation, and 

wind speed). All the models are estimated using STATA 14 (StataCorp LP, College Station, 

Texas) and its extension, SPost 9 (Long & Freese, 2006). 

The following weather variables are used during model-building (Table 13): tmax 

denotes the daily max temperature in Blacksburg, VA, which is expected to promote bicycle and 

pedestrian activities except under extremely high temperatures. Tmaxdev describes the daily 

variation compared to the normal 30 year average (1980-2010) with either positive or negative 

expected sign. Precipitation is treated as a barrier for outdoor activities with a negative expected 

sign. Each temperature and precipitation variable was retrieved from the national Climate Data 

Center of the national Oceanic and Atmospheric Administration (NOAA). Windspeed generally 

reduces the preference to bike or walk, and the data was retrieved from the national Weather 

Service Forecast Office. Since the student population at Virginia Tech is expected to influence 

the traffic volumes, we incorporated dummy variables (i.e., weekend and university in session) 

into the analysis. Weekend indicates whether it was weekend (1) or weekday (0); and university 

in session denotes whether the university was in session (1) or not (0). 
 

Table 11. Variables used in regression models of bicycle and pedestrian traffic 

Variables Definition Mean Expected signs 

tmaxdev 
High temperature deviation from the 

30-year average (1980-2010)  
0.91 +/- 

tmax Daily maximum temperature (Celsius) 18 + 

precipitation Precipitation (mm) 3.4 - 

windspeed Average wind speed (mph) 4.3 - 

weekend 
Saturday or Sunday (equals 1, 

otherwise 0) 
0.29 +/- 

university in session 
University in session (equals 1, 

otherwise 0) 
0.44 + 

 

Table 12. Negative binomial regression results of the bicycle and pedestrian models 

  Bicycle Model Pedestrian Model 

  Draper  College Giles  Huckleberry Draper  College Giles  Huckleberry 

Observation 257 247 246 350 263 225 102 336 

Pseudo R2 0.067 0.11 0.12 0.082 0.026 0.031 0.055 0.022 

Constant 1.9 2.6 3.01 4.03 4.2 7.4 6.05 5.5 

Weather and temporal variables 

tmaxdev -0.052*** -0.051*** -0.030*** -0.021*** -0.017*** -0.0054 0.017* -0.0064 

tmax 0.062*** 0.062*** 0.038*** 0.059*** 0.021*** 0.018*** -0.036*** 0.030*** 

precipitation -0.0081*** -0.0031 -0.0064*** -0.0080*** -0.0035* -0.0015 -0.0018 -0.0044* 

windspeed -0.0069 -0.020 -0.039*** -0.028*** -0.0028 0.0085 -0.019* -0.018* 

weekend -0.36*** -0.097* -0.090* 0.11** -0.14*** 0.62*** 0.64 0.41*** 

university in 

session 
0.22*** 0.66*** 0.92*** 0.18*** 0.21*** 0.83*** 0.25*** 0.38*** 

Note: dispersion factor p of each model is smaller than 0.05. Chi-square tests (p < 0.05).  

*** denotes p-value < 0.01; ** denotes p-value < 0.05; *denotes p-value < 0.10. 
 

The overall results of the site-specific negative binomial regression models are as 

expected (Table 12). Almost all sites show correlations with the included variables; however, 

there are some differences by site and mode. For example, the bicycle and pedestrian traffic at 
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College Avenue are not significantly influenced by precipitation or wind speed, which may be 

explained by the utilitarian nature of the site (e.g., eating, attending class, meeting friends). The 

results show that cyclists are more sensitive to weather conditions than pedestrians, which is 

consistent with previous research, e.g., Hankey et al. (2012).  

For bicycles at the continuous reference sites, tmax is significant with an expected 

positive sign: 1 °C increase in temperature is associated with an average 5.5% increase of 

bicycles. The variable tmaxdev is significant with a negative sign, which means for 1 °C more 

deviation from the 30-year (1980-2010) averages, bicycles decrease by average 3.7%. The 

coefficient of precipitation is negative as expected: 1 mm increase of precipitation associates 

with average 0.7% decrease of bicycles. Similar to precipitation, windspeed is also significant 

for 2 sites and has a negative sign: The percent change in bicycles is a 2.4% decrease for every 1 

mph increase of wind speed. The site-specific bicycle traffic also depends on whether it’s 

weekend or weekday, and university is in session or not. The variable weekend is significant with 

mixed signs. More specifically, Huckleberry Trail has estimated 11% higher traffic on weekends 

than weekdays controlling for other variables in the models, while on average, other three sites 

experience estimated 18% drop. The variable university in session has significantly positive sign, 

which indicates that when university is in session, Giles Road shows estimated 91% higher 

traffic compared to other time. College Avenue is also sensitive to this variable with a 66% 

difference, however, the other two sites only change by 20% in this case.  

For pedestrians at the continuous reference sites, tmax is significant at the 1% level with 

an expected positive sign for sites except Giles Road: 1°C increase in temperature is associated 

with average 3% pedestrian increase for most sites, however, Giles Road reacts 3% decrease 

instead. This may be explained by comparatively less valid pedestrian count days (102 days). 

The coefficient of precipitation is negative: 1 mm increase of precipitation is significantly 

associated with 0.3% decrease of pedestrians at Draper Road and Huckleberry Trail, which 

suggests slight disturbance from precipitation, while College Avenue and Giles Road are not 

significantly associated with precipitation. This may due to College Avenue’s proximity to 

downtown restaurant and Giles Road’s lack of valid monitoring days. Similar to precipitation, 

windspeed reveals negative signs: average 1.8% pedestrians decrease for 1 mph increase of wind 

speed at Giles Rd and Huckleberry Trail, while it is not significant at Draper Rd. or College Ave. 

The variable weekend is significant with mixed signs. College Road and Huckleberry Trail have 

50% more pedestrian on weekends than on weekdays controlling all other variables in the 

models, while Draper Road experiences 13% decrease (this may be explained by party groups to 

downtown and recreational use on Huckleberry Trail on weekends, while Draper Road reveals a 

commute pattern). University in session is also significant at less than 1% level with a positive 

sign. This indicates that when university is in session, College Avenue has 83% more pedestrian 

traffic, while other sites also increase by 27% in average.  

Model validation and imputing missing counts at the continuous reference sites  

We applied the negative binomial regression models to estimate missing counts days at 

the reference sites. We compared the model-generated counts to the existing observed 

(automated) counts (Figures 17-20). The left-panel of the figures show a comparison between a 

full year of estimated counts and observed (automated) counts; the right-panel shows correlation 

between the estimated counts and observed counts. The goal is to combine the observed data 

with the imputed data to estimate a full year of counts at each reference site.  
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Figure 17. Observed and model-estimated daily bicycle traffic at Draper Road and College Avenue. 
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Figure 18. Observed and model-estimated daily bicycle traffic at Giles Road and Huckleberry Trail. 
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Figure 19. Observed and model-estimated daily pedestrian traffic at Draper Road and College Avenue. 
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Figure 20. Observed and model-estimated pedestrian traffic at Giles Road and Huckleberry Trail. 
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Overall, the negative binomial models performed more reliably for bicycle traffic 

(validation R2 = ~0.70) than for pedestrian traffic (validation R2 = ~0.30). This is likely because 

some variables (i.e., windspeed, precipitation) are not significantly associated with pedestrian 

traffic at some sites (i.e., College Avenue, and Giles Road) or that other important factors are not 

included in the models.  

For the bicycle models, College Avenue, Giles Road and the Huckleberry Trail all show 

reasonable validation R2 (0.70, 0.70 and 0.67). However, Draper Road has relatively low 

validation R2 = 0.33. The estimated bicycle traffic (blue line) tracks well with the observed line 

(orange) at College Avenue, Giles Road and Huckleberry Trail; however, during April 15 to June 

6, Draper Road doesn’t fit that well. For the pedestrian estimation models, College Avenue has 

validation R2 = 0.37, and other sites reveal low validation R2 at around 0.20. Draper Road 

underestimates between April 15 and June 6; College Avenue, Giles Road and Huckleberry Trail 

overestimate during June to August. However, the eight site-specific models work reasonably 

well to estimate the bicycle and pedestrian traffic for the minority of days (~10%) that are 

missing data. 

We combined the observed values with the model-generated estimates for missing days 

to develop a full year-2015 dataset for each reference site. The end goal is to use the full year of 

bicycle and pedestrian data to calculate the AADT (Table 13) for each reference site. This 

AADT can then be used during the development of the day-of-year scaling factors used to 

extrapolate the short-duration counts to long-term averages. The combined datasets (i.e., 

observed counts + model-generated estimates of missing days) are shown in Figures 21 and 22.  

 

Table 13. AADT for continuous reference sites 

  Draper College Giles Huckleberry 

AADT using observed 

values + model-generate 

estimates of missing days 

Bicycle  21 54 55 179 

Pedestrian 98 4,232 289 518 

AADT using observed 

values only 

Bicycle  24 62 59 177 

Pedestrian  103 4,424 168 514 
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Figure 21. Full year-2015 bicycle traffic at the four continuous reference sites. 
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Figure 22. Full year-2015 pedestrian traffic at the four continuous reference sites. 
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Developing scaling factors 

Hankey et al. (2014) and Nosal et al. (2014) introduced a day-of-year scaling factor 

approach to produce AADT estimates with smaller error (for non-motorized traffic) than the day-

of-week (ratio of average day of week traffic to AADT) and month-of-year (ratio of average 

monthly traffic to AADT) methods. We generated 365 day-of-year scaling factors from the 4 

continuous reference sites for both bicycle and pedestrian traffic. Equation 7 shows the scaling 

factor calculation used for each site; Figure 23 shows the averaged (across the four reference 

sites) day-of-year scaling factors developed for Blacksburg, VA during year-2015. The overall 

pattern of the bicycle and pedestrian scaling factors demonstrates an “M” shape likely owing to 

weather patterns and when the University is in session. In other words, there is less traffic in the 

winter because of cold weather and relatively less in the summer because students leave. This 

indicates that peak traffic occurs in the spring and fall seasons for Blacksburg.  
 

             Day-of-year scaling factor = 
𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑛 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑑𝑎𝑦

 𝐴𝐴𝐷𝑇
                             Equation 7 

 

 
Figure 23. Average Day-of-Year scaling factors for bicycle (top-panel) and pedestrian (bottom-

panel) traffic. 
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AADT estimation at short-duration count sites 

We used the bicycle and pedestrian day-of-year scaling factors to estimate the site-

specific AADT for each day of the short-duration count period (~7 days per location); we then 

averaged the AADT estimates to calculate a final AADT for each short-duration site. For 

example, at Sunridge Drive (a short-duration count site), the monitoring period was from May 5 

to May 11 (May 9 and May 10 are weekends; Table 14). The scaling factors were retrieved for 

each count day. The number of reference sites provides additional information on the number of 

sites that are used to calculate the average day-of-year factor for each day. The final AADT 

estimate for each short-duration count site is as follows:  

 
 

                            AADT Estimate = 
1

𝑛
 ∑

𝐴𝑑𝑗𝐶𝑖

𝑆𝐹𝑖

𝑛
𝑖=1                                        Equation 8 

 

Where, 𝐴𝑑𝑗𝐶𝑖 is the adjusted count on day i, n equals the number of days for short-duration 

counts, and 𝑆𝐹𝑖 denotes scaling factors retrieved from observed data on day i. Table 14 shows 

the example for Sunridge Drive.  

 

Table 14. Example of the estimation process for AADT of bicycle traffic at a short-duration 

count site (Sunridge Drive) 

2-SUNRIDGE Bicycle     

Data Adj count Scaling factor  AADT Estimate Number of reference sites 

May 5 42 2.20 19 4 

May 6 28 1.67 17 4 

May 7 34 1.92 18 4 

May 8 49 1.77 28 4 

May 9 37 1.64 23 4 

May 10 34 1.01 34 3 

May 11 41 1.54 27 4 

Average 38 1.68 24 4 
 

 

Task 4: Spatial models to estimate AADT at sites without counts 

Tasks 1-3 primarily focus on collecting and analyzing non-motorized traffic counts at 

~100 count sites. We also developed a tool to estimate traffic volumes at locations without 

counts based on land use and road characteristics. Our approach is generally known as direct-

demand or facility-demand modeling. The approach generally includes: (1) assembling land use 

and road characteristic variables at each count site, (2) using the traffic counts and land use 

variables to develop a regression model, and (3) use the regression model to estimate traffic 

volumes at locations without counts. Here, we present work towards steps #1 and #2. The 

resulting model can then be used to estimate counts at locations of interest in Blacksburg (#3). A 

key outcome of this work is the ability to explore spatial patterns of cycling and walking. 

Assembling independent variables 

We assembled independent variables related to land use and road characteristics for 

model building (Table 15). In general, our independent variables are measures of factors shown 

to affect an individual’s likelihood to walk or bike (e.g., population density, type of land use, 
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etc). The variables generally fall in four categories: (1) land cover, (2) land use, (3) population 

characteristics, and (4) transportation network attributes. We assembled all variables from 

publicly available sources. All variables were used for model-building except on-street facilities 

in the pedestrian model and sidewalks in the bicycle model. 

 

Table 15. Variables included in the model-building process 
Variable Variable Type Unit Bicycle Model Pedestrian Model 

Impervious surface Land cover Square meters X X 

Non-tree vegetation Land cover Square meters X X 

Paved parking Land cover Square meters X X 

Tree vegetation Land cover Square meters X X 

Industrial area Land use Square meters X X 

Non-residential addresses Land use Count in buffer X X 

Residential addresses Land use Count in buffer X X 

Retail area Land use Square meters X X 

HH Income Population Area-weighted average X X 

Population density Population Area-weighted average X X 

Bus stops Transportation Count in buffer X X 

Centrality Transportation Trip potential X X 

Intersections Transportation Count in buffer X X 

Local roads Transportation Length in buffer X X 

Major roads Transportation Length in buffer X X 

Off-street trail Transportation Length in buffer X X 

On-street bike facility Transportation Length in buffer X  

Sidewalks Transportation Length in buffer  X 

  

We calculated all independent variables at varying spatial scales to allow for selection in 

the regression models at different spatial scales. Specifically, we calculated network buffers 

around each count location (using Network Analyst in ArcGIS 10.1) at the following buffer sizes 

(in meters): 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2500, 3000. Then, variables were 

offered for selection into the regression models using the stepwise linear regression process 

described below. We generated 17 buffer variables (17 variables x 11 buffer sizes = 187 

variables) and 1 discrete variables resulting in a total of 188 variables available for selection in 

the regression models. Our buffers were calculated using a network buffer (to reflect access to 

destinations) rather than circular buffers. This process creates unique buffers for each count 

location based on the configuration of the road network. Figure 24 shows an example of network 

buffers generated to tabulate land use variables for a facility-demand model in Minneapolis, MN. 

A similar approach was used in this work. 
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Figure 24. Example of network buffers used to tabulate land use variables at varying spatial 

scales for model-building. This map shows an example in Minneapolis, MN; the same method 

was used in Blacksburg, VA. 

Model-building approach 

We used a stepwise linear regression approach originally developed for urban air quality 

modeling. In this approach, independent variables are assembled at various buffer sizes and 

offered to the model for selection. Each variable is tested against the dependent variable (i.e., 

bicycle or pedestrian count) for strength of correlation. The independent variable most correlated 

with the dependent variable is selected and the regression is run. Then, the independent variable 

most correlated with the model residuals is entered into the regression. This process repeats until 

either (1) the last entered variable is not significant in the model (p >0.05) or (2) the Variance 

Inflation Factor (VIF) is greater than 5 (VIF is a check for multi-collinearity). 

 A key advantage of the stepwise regression approach is that independent variables can be 

selected at different spatial scales; thus, we can assess whether certain aspects of the built 

environment have impacts at large or small spatial scales. Additionally, by including only 
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variables that are statistically significant (and do not have issues with multi-collinearity), we 

develop more parsimonious models while maintaining predictive power.  

FINDINGS 
In this section we summarize our core findings in three sections: (1) traffic patterns 

observed at the reference sites, (2) traffic patterns at the short-duration count sites, and (3) model 

results from the spatial models used for estimating traffic at locations without counts. We then 

summarize our conclusions and recommendations in the final section. In general we discuss 

temporal patterns using the data from the reference sites, spatial patterns using data from the 

short-duration sites, and infer impacts of land use from the spatial models. 

Continuous reference sites 

We analyzed the average daily traffic, mode share, weekend to weekday traffic ratio, and 

hourly traffic patterns for all continuous reference sites. Our goal is to illustrate seasonal, daily, 

and hourly traffic patterns for bicycles and pedestrians in Blacksburg. Table 16 gives descriptive 

statistics of the counts at the reference sites. 

 

Table 16. Descriptive statistics of daily bicycle and pedestrian traffic volumes for the continuous 

reference sites 

Mode Site Observations (days) Mean Median IQR Standard Deviation 

Bicycle 

Draper 257 24 24 18 14 

College 247 62 62 36 30 

Giles 246 59 52 35 34 

Huckleberry 350 177 174 173 99 

Pedestrian 

Draper 263 103 96 47 41 

College 225 4,424 4,120 3,154 2,115 

Giles 102 168 156 45 51 

Huckleberry 336 514 502 321 244 
IQR = Interquartile Range. 

 

Average daily traffic and mode share 

We present the average daily traffic (adjusted using the correction equations) and mode 

share to demonstrate the traffic patterns by month at the reference sites. From February to 

August, the average daily bicycle volume increases gradually at the Huckleberry Trail and peaks 

approximately at 300 cyclists per day (Figure 25). The Huckleberry demonstrated a slight 

depression in traffic during the summer months (presumably attributable to the student 

population leaving town) and the peaked again in August before decreasing as the weather 

became colder. College and Giles followed similar patterns although at much lower overall 

volumes (~50 cyclists per day). Draper Road seemed to demonstrate a constantly decreasing 

traffic volume as the year progressed. 

The average daily pedestrian is highest on College Avenue (peaking at ~6,000 people per 

day) with a noticeable reduction in traffic volume when student leave campus during June and 

July. The Huckleberry Trail peaks at ~600-700 people per day in the spring and fall season; 

again, there is a noticeable reduction during the summer months likely due to the student 

population. Draper Road demonstrates a similar pattern but a much lower overall volumes (~100 

people per day). Giles Road seems to show a similar pattern to the other sites (i.e., peak traffic in 

the spring a fall; reduced traffic in summer due to the student population and in the winter due to 
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weather); however, data from this site is incomplete due to vandalism to the Eco-counter located 

at this count site. Figure 25 shows the seasonal patterns. 

 

 

 
Figure 25. Average daily bicycle (top-panel) and pedestrian (bottom-panel) volume (24-hour) by 

month for the continuous reference sites. 

We also calculated mode share at each reference location to assess if sites were 

dominated by either cycling or pedestrian traffic. Overall, pedestrian mode share was high at all 

4 sites. The Huckleberry Trail location reveals a gradual increase of bicycle mode share until 

May, and all other sites gradually increase until June. All sites show decreasing bicycle share 

after July. Figure 26 gives mode share by month.  
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Figure 26. Mode share by month. Bicycle mode share (top-panel) and pedestrian mode share 

(bottom-panel). 

Weekend to weekday ratio  

We summarized the average weekend to weekday count ratios (i.e., daily average 

weekend traffic divided by daily average weekday traffic) at each continuous reference site by 

month. These ratios are interpreted as follows: ratios greater than 1 indicate that the site would 

be more likely recreational users (i.e., daily average weekend traffic exceeds daily average 

weekday traffic) while ratios less than 1 may indicate more likelihood for commute users. 

However, there may still be some commute users on weekends at sites with recreational pattern, 

and recreational users on weekdays at sites with commute pattern. Figure 27 shows the ratios for 

each site by month. 

For bicycles on Giles Road, College Avenue, and Draper Road, the ratios are below 1, 

which suggests a commute pattern. The Huckleberry Trail has a ratio that remains close to 1 

throughout the year indicating that this site has a mix of commute and recreational users. All 
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sites seemed to have a reduced ration during the late fall and early winter indicating a shift to 

more commute uses during that season. 

For pedestrians, all sites remain relatively close to a ratio of 1 throughout the year 

indicating mixed traffic. There are a few noticeable exceptions. For example, the Huckleberry 

Trail seems to shift towards more recreational uses in the winter. The Draper Road location 

seems to demonstrate a more commute based pattern than the other sites. There is also slight 

evidence of the shift towards more commute uses in the late fall as observed by the bicycle 

patterns. 

 

 

 
Figure 27. Continuous reference sites daily average weekend to weekday pedestrian ratio. 

 

Hourly traffic patterns 

Figure 28 shows the hourly traffic patterns at the continuous reference sites. For bicycle 
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from 6am – 8pm. Draper Road and the Huckleberry show noticeable afternoon peak-hours; 

College Ave has a slight morning peak-hour. 

For pedestrian traffic, results are mixed. In general, weekends demonstrated a mostly 

recreational pattern. At two locations (College Ave and Giles Rd) there was a significant peak in 

traffic during the 1-2am period. For weekdays, there was a noticeable 12pm peak (presumably 

for lunch) that did not occur for bicycles. There was also a noticeable afternoon peak-hour for 

each count site. 

 

  

  
 

Figure 28. Hourly traffic patterns at the reference sites. Bicycle traffic (top-panels) and 

pedestrian traffic (bottom-panels). 

  

 

 

 

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

12:00 AM 6:00 AM 12:00 PM 6:00 PM

%
 o

f 
H

o
u
rl

y
 B

ic
y
cl

e 
o

n
 W

ee
k
en

d
s

Draper College

Giles Huckleberry

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

12:00 AM 6:00 AM 12:00 PM 6:00 PM

%
 o

f 
H

o
u
rl

y
 B

ic
y
cl

e 
o

n
 W

ee
k
d

ay
s

Draper College

Giles Huckleberry

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

12:00 AM 6:00 AM 12:00 PM 6:00 PM

%
 o

f 
H

o
u
rl

y
 P

ed
es

tr
ia

n
 o

n
 W

ee
k
en

d
s

Draper College

Giles Huckleberry

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

12:00 AM 6:00 AM 12:00 PM 6:00 PM

%
 o

f 
H

o
u
rl

y
 P

ed
es

tr
ia

n
 o

n
 W

ee
k
d

ay
s

Draper College

Giles Huckleberry



39 

 

Short-duration sites 

In this section we summarize results from the short-duration count sites by: (1) assessing 

potential factor groups, (2) describing traffic patterns by day of week and (3) mapping our 

estimates of AADT. 

Determining potential factor groups 

Based on the metrics used by Miranda-Moreno et al. (2013) and Hankey et al. (2014), we 

classified all short-duration sites into potential factor groups. The purpose of this exercise is to 

explore what factor groups may exist for non-motorized traffic. In motorized traffic application, 

factor groups are used to match continuous reference sites with short-duration sites for the 

purpose of scaling. For example, continuous reference sites labeled as commute pattern are used 

to scale short-duration sites with a commute pattern. However, due to limitations of the number 

(n=4) of continuous reference sites, we did not separately apply scaling factors based on different 

factor groups. Instead, all reference sites will be pooled to estimate scaling factors to scale all 

short-duration sites. The factor groups of short-duration sites here serve as reference information 

for future research. 

To categorize count sites into factor groups, two indices are introduced: (1) relative index 

of weekend vs. weekday traffic (WWI) and (2) relative index of morning (7:00 a.m. to 9:00 a.m.) 

to midday (11:00 a.m. to 1:00 p.m.) traffic (AMI) for weekdays. Miranda-Moreno et al. (2013) 

derived four classifications: (1) utilitarian, (2) mixed-utilitarian, (3) mixed-recreational, and (4) 

recreational. To simplify this process, we define only three factor groups: Commute, Recreation, 

and Mixed (Table 17). Our goal is to calculate WWI and AMI for each site and classify them 

into factor groups.  

                                        𝑊𝑊𝐼 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 𝑇𝑟𝑎𝑓𝑓𝑖𝑐

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑒𝑒𝑘𝑑𝑎𝑦 𝑇𝑟𝑎𝑓𝑓𝑖𝑐
                                Equation 9                     

                   𝐴𝑀𝐼 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑒𝑒𝑘𝑑𝑎𝑦 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑓𝑟𝑜𝑚 7 𝑎.𝑚.  𝑡𝑜 9 𝑎.𝑚.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑒𝑒𝑘𝑑𝑎𝑦 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑓𝑟𝑜𝑚 11 𝑎.𝑚.𝑡𝑜 1 𝑝.𝑚.
                         Equation 10 

 

Table 17. Factor group definitions 

Travel Pattern WWI and AMI 

Commute WWI ≤ 1.0    AMI > 1.0 

Recreation WWI > 1.0    AMI ≤ 1.0 

Mixed Other 

 

We generated box plots to display the distribution of bicycle and pedestrian WWI and 

AMI among the short-duration sites. The commute pattern shows lower WWI and higher AMI, 

while the recreation pattern presents higher WWI and lower AMI, and the mixed pattern is in the 

middle. The box plots show exactly this pattern for both bicycles and pedestrians (Figure 29). To 

explain the spatial distribution of the travel patterns across Blacksburg, VA, we mapped the 

factor groups for bicycles and pedestrians (Figure 30). Most sites demonstrate a mixed pattern 

for bicycles and pedestrians, which indicates that these sites reveal no dominant (i.e., recreational 

or commute) traffic pattern. Due to zero count values during some periods of time (i.e., 

weekend/weekday, morning/midday traffic), some sites are not mapped (n=12). 
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Figure 29. WWI and AMI among short-duration count sites for bicycles (top-panels) and 

pedestrians (bottom-panels). 
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Figure 30. Factor groups (i.e., commute, recreational, and mixed) of traffic count sites in 

Blacksburg, VA. 

 

Weekend and weekday traffic patterns 

Similar to the approach for the reference sites we assessed hourly traffic patterns at the 

short-duration sites by stratifying by the three potential factor groups (i.e., commute, mixed, 

recreation). As expected the hourly followed either more recreational or more commute patterns 

depending on how the sites were classified in the factor groups. This was especially true for 

weekdays for both modes (as well as weekends for pedestrians). Figure 31 shows the hourly 

patterns by factor group. 
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Figure 31. Hourly traffic patterns at short-duration count sites by factor group. 

Traffic patterns by road and street type 

Descriptive statistics of daily bicycle and pedestrian traffic for the short-duration sites is 

shown in Table 18. In general, traffic volumes were correlated with street functional class. 
 

Table 18. Descriptive statistics of average daily bicycle and pedestrian for short-duration sites 

  Observations (sites) Mean Median IQR Standard Deviation 

Bicycle 

Total 97 46 31 39 58 

Major Road 29 37 33 31 18 

Local Road 48 38 22 33 51 

Off-street Trail 20 79 42 102 92 

Pedestrian 

Total 68 306 124 158 670 

Major Road 24 198 156 138 151 

Local Road 24 593 161 423 1,066 

Off-street Trail 20 92 50 136 108 
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We also generated bar charts to analyze number of sites showing the relevant factor 

groups by road type (Figure 32). Bicycles on local roads present the largest proportion among all 

road/trail types in commute pattern or mixed pattern, which may due to the suitable environment 

for cycling (e.g., low vehicle volumes, fewer traffic lights). A similar pattern is shown for 

pedestrians, i.e., pedestrians on local roads demonstrate the largest proportion of commute 

pattern.  

 

  
Figure 32. Bicycle and pedestrian factor groups by road type. 

Figure 33 shows the distribution of bicycle and pedestrian AADT by street functional 

class and bike facility. For bicycle AADT, we performed an independent sample t-test to 

compare AADT for roads with a bike lane and roads without. The results show that bicycle 

AADT is significantly higher (p < 0.01) on roads with a bike lane (mean: 72) compared to roads 

without (mean: 30). Similarly, a t-test also found that bicycle AADT is significantly higher (p < 

0.01) on off-street trails (mean: 72) compared to major roads (mean: 33). Pedestrian AADT is 

significantly higher (p < 0.01) on local roads (mean: 693) as compared to off-street trails (mean: 

111); this finding is likely owing to the fact that most roads on the Virginia Tech campus are 

classified as local roads. 
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Figure 33. Bicycle (top-panel) and pedestrian (bottom-panel) AADT by road/trail type. 

 

Mapping AADT estimates 

We mapped all AADT estimates (including continuous reference sites; Figure 34). The 

maps show that more bicycles are found along the transport trails (e.g., Huckleberry Trail, 

Smithfield Trail) and near the university campus. The largest pedestrian volumes (~500/hour) are 

within the University area (Virginia Tech) and pedestrians cluster along Main Street with 

commercial uses. In some neighborhood areas (i.e., Foxridge in the west) and off-street trails 

(i.e., Huckleberry Trail), walking activity is also higher compared to outer lying areas. The maps 

give a visual representation of the spatial variability of the traffic counts. We also further explore 

impacts of land use via the spatial models described in the next section. 
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Figure 34. Maps of AADT estimates for bicycle (left-panel) and pedestrian (right-panel) at the 

traffic count sites. 

Spatial models of bicycle and pedestrian traffic 

The information provided above describes patterns of bicycle and pedestrian traffic at 

specific count locations in Blacksburg. However, a useful tool for planners is a method to 

estimate traffic volumes at locations without counts. Here, we present one such method (e.g., 

direct-demand modeling) to combine information about land use at the count sites to develop 

regression models. These models can then be used to estimate traffic volumes at locations 

without counts. 

Bicycle model results 

A total of five variables were selected in the final model for bicycle traffic volumes with 

overall satisfactory goodness-of-fit (i.e., adj-R2: 0.52). Centrality (the variable for which we 

designed our sampling campaign) was significant with a positive coefficient as expected. The 

centrality metric incorporates features of the road network (e.g., off-street trails) and origins and 

destinations in the metric. Household income was negatively correlated with bicycle traffic 

indicating that volumes are smaller in these neighborhoods. Major roads, on-street facilities, and 

population density were all positively correlated with bicycle traffic volumes. Notably, many of 

the variables were selected at the 100 and 250 meter buffer size. This indicates that small-scale 

variability in land use may have an impact on bicycle traffic volumes. Population density was 

selected at a relatively larger buffer size (1,250 meters) and thus is correlated at a regional or 
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neighborhood scale. Table 19 gives model results for the final bicycle model; Figure 35 shows a 

scatterplot of observed vs. predicted bicycle counts. 

 

Table 19. Final bicycle regression model results 

Parameter Buffer Beta p-value VIF 

HH Income 250 -8.8E-06 0.01 1.87 

Centrality - 2.8E-06 <0.01 1.22 

Major Roads 100 2.7E-03 0.01 1.09 

Population density 1,250 3.1E-04 <0.01 1.67 

On-street facility 100 3.6E-03 0.04 1.06 

Intercept - 2.5 <0.01 - 

R2  Adj-R2  N 
  

0.54 0.52 101 

 

 
Figure 35. Scatterplot of observed vs. predicted bicycle counts. 

Pedestrian model results 

Six total variables were selected in the final pedestrian model with good model fit (adj-

R2: 0.71). Similar to the bicycle models there was a mix of transportation and land use variables 

included in the model. Sidewalks (an important piece of infrastructure for pedestrians) was the 

first variable selected in the model. Similar to the bicycle model, pedestrian traffic decreased in 

high income neighborhoods; pedestrian volumes were also negatively correlated with 

concentrations of residential uses. Off-street trails also were negatively correlated with traffic 

potentially suggesting that utilitarian uses (i.e., along retail corridors and on campus) dominate 

recreational uses (presumed to be predominantly on trails). Both concentration of bus stops and 

population density were positively correlated with pedestrian volumes. Overall, there were a mix 

of variables selected at small and large spatial scales. Table 20 gives model results for the final 

bicycle model; Figure 36 shows a scatterplot of observed vs. predicted bicycle counts. 
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Table 20. Final pedestrian regression model results 

Parameter Buffer Beta p-value VIF 

Sidewalk 750 7.8E-05 <0.01 2.14 

Off-street Trail 100 -4.0E-03 <0.01 1.27 

HH Income 1,750 -1.6E-05 <0.01 1.34 

Residential Address 1,000 -6.2E-04 <0.01 1.49 

Population density 750 1.7E-04 0.01 1.51 

Bus stops 250 0.13 0.03 1.46 

Intercept - 5.14 <0.01 - 

R2  Adj-R2  N 
  

0.73 0.71 72 

 

 
Figure 36. Scatterplot of observed vs. predicted pedestrian counts. 

Potential uses of spatial models 

We explored building spatial models of bicycle and pedestrian traffic to allow for 

generating traffic volume estimates at locations without counts. The models could be used for 

various purposes. For example, we plan to generate estimates of bicycle and pedestrian traffic on 

all street segments in Blacksburg, VA to give a comprehensive picture of travel patterns in the 

Town. This information could be used to plan for bicycle and pedestrian transportation during 

the buildout of the Town Bicycle Master Plan. Similarly, estimates of traffic volumes could be 

used in sketch planning exercises to give an estimate of what type and level of traffic can be 

expected in given corridors. While our models will not give accurate estimates in all cases, we 

can provide more information than is currently available to planners in Blacksburg. 
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CONCLUSIONS & RECOMMENDATIONS 
This report describes a bicycle and pedestrian count campaign to assess and model 

patterns of traffic in Blacksburg, VA. Here, we summarize our main conclusions and 

recommendations in three areas: (1) considerations for implementing a non-motorized traffic 

count campaign, (2) considerations for processing data and estimating performance measures, 

and (3) considerations for future work. 

Considerations for implementing a non-motorized traffic count campaign 

We collected ~40,000 hours of bicycle and pedestrian counts consisting of 4 continuous 

reference sites (1 year of counts) and 97 short-duration sites (~1-week counts) in Blacksburg, 

VA. Here, we briefly summarize key considerations for implementing a non-motorized count 

campaign: 

 Choosing appropriate count technology: A variety of automated counters exist; each 

are appropriate for different situations. Depending on the type of infrastructure (i.e., 

street vs. sidewalk vs. trail) and mode (bicycle vs. pedestrian vs. mixed-mode) 

multiple counters are likely needed to characterize the network. In our case, three 

types of counters were sufficient. 

 Counter validation: We performed validation counts at multiple sites for each 

counter-type. We found strong correlation between validation counts and automated 

counts. However, correction equations varied by counter-type. This finding is 

consistent with previous studies and highlights the need to perform counter-specific 

validation studies prior to deploying each counter in a count campaign. 

 Count site selection: A key aspect of choosing sites is the purpose of the count 

campaign. The counts can be used to track traffic volumes over time, compare spatial 

locations, assess corridors of interest (i.e., pre- and post-counts), develop spatial 

models, etc. Choice of sites should match the purpose of the campaign. A key barrier 

to site selection is that typically practitioners do not have existing information on 

patterns of biking and walking. To address this issue we used a metric called 

“centrality” to estimate bicycle trip potential on the network. Since our goal was to 

develop spatial models and collect baseline information for future infrastructure 

installation, we selected sites with both high and low centrality as well as locations of 

future infrastructure investment. 

 Labor requirements: We staffed one graduate student at 20 hours per week for 1.5 

years to complete this project. That labor input included physical installation of the 

counters, download of counter data, and processing and analyzing the data. Similar 

efforts should account for a similar labor input to complete a count campaign of this 

scale. Additional labor was provided by the Town of Blacksburg at high volume sites 

to divert traffic during installations. 

Considerations for data processing and estimating performance measures 

Data quality and processing is important to ensure accurate calculation of performance 

measures and to better understand bicycle and pedestrian traffic patterns. Here, we summarize 

key aspects of our analysis that may be useful in future efforts: 
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 Scaling short-duration counts: We used previously published methods for estimating 

AADT at short-duration sites. Namely, we collected counts for 1 week at short-

duration sites and day-of-year scaling factors derived from permanent reference sites. 

This approach necessitates installation of permanent reference sites to develop scaling 

factors and capture long-term temporal trends; a full year of data from the reference 

sites is needed to generate the day-of-year scaling factors. 

 Choice of reference sites: Choosing appropriate reference sites is difficult in the 

absence of information on current cycling and walking levels in a study area. We 

chose reference sites at a variety of road and neighborhood types in an attempt to 

capture overall temporal trends in Blacksburg; future work on this topic (see below) 

is likely needed. 

 QA/QC: We used a two-step process to identify and flag suspect data: (1) direct 

cleaning based on an event log and (2) a statistical check based on the variability of 

the overall dataset. We recommend – at a minimum – keeping a detailed event log 

that includes events (e.g., marathons, concerts, etc.) that might skew the data at 

particular count sites. Statistical methods can be used to further refine QA/QC if 

needed. More work to identify appropriate statistical methods for non-motorized 

counts would be helpful. 

 Imputing missing data: We used negative binomial regression models to impute 

missing data at the reference sites. This approach was used to generate AADT 

estimates at the reference sites. However, we do not recommend using the imputed 

data to develop scaling factors (i.e., we did not use the imputed data in the numerator 

of the scaling factor calculation); we only used the estimates to generate a more 

reliable AADT at those sites (i.e., as the denominator in the scaling factor 

calculation). 

 Spatial models to estimate traffic volumes at locations without counts: A potentially 

useful tool is to develop spatial models to estimate traffic volumes at locations 

without counts. We used a modeling technique called direct-demand modeling. Our 

models had reasonable goodness-of-fit and would be simple to apply in the field. 

However, questions remain about transferability of these models to other study areas 

(see below). 

Considerations for future work 

Our work is a proof-of-concept for a count campaign – conducted in a small rural college 

town (Blacksburg, VA) – to be used to estimate the bicycle and pedestrian traffic volumes at 

locations without counts. It offers evidence that non-motorized traffic can be monitored on a 

routine basis and that performance measures analogous to those for motorized traffic (i.e., 

AADT) can be used to track progress. Here, we highlight areas for future research: 

 Number and location of reference sites: A key outstanding question is how best to 

locate reference sites and how many reference sites are sufficient in a given study 

area. Since initial details on bicycle and pedestrian traffic are not available in most 

jurisdictions, selecting appropriate reference sites can be difficult. More work is 

needed to give guidance on best practices for siting reference locations. 
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 Factor groups for count sites: Related to the first bullet point is how many and what 

type of factor groups exist for bicycle and pedestrian traffic. We followed previous 

work to identify three preliminary groups (utilitarian, recreational, and mixed); 

however, more work is needed to finalize group types and give guidance for locating 

reference sites within these groups. 

 Predictor variables in spatial models: We assembled a database of potential predictor 

variables to be used in the spatial models. More work is needed to compile data that 

may be better predictors of bicycle and pedestrian traffic. 

 Transferability of spatial models: A key issue with direct-demand modeling is that 

results may not transfer between jurisdictions. While these models may not be 

transferable, they do seem to provide reliable estimates within a given study area. 

More work is needed to develop reduced-form models that may better transfer 

between locations. 

 Integrating state and national efforts: Lastly, more work is needed to better integrate 

non-motorized counting efforts across state and federal agencies. Although counting 

occurs in many locations, data is often collected in different (sometimes 

incomparable) ways. Work to give guidance to communities on best practices and 

accepted protocols at the state and federal level would be helpful in efforts to pool 

count data across regions, states, and the country. 
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